Abstract
The ability to rank and select the best model is important in protein structure prediction. Model Quality Assessment Programs (MQAPs) are programs developed to perform this task. They can be divided into three categories based on the information they use. Consensus based methods use the similarity to other models, structure-based methods use features calculated from the structure and evolutionary based methods use the sequence similarity between a model and a template. These methods can be trained to predict the overall global quality of a model, that is, how much a model is likely to differ from the native structure. The methods can also be trained to pinpoint which local regions in a model are likely to be incorrect. In CASP7, we participated with three predictors of global and four of local quality using information from the three categories described above. The result shows that the MQAP using consensus, Pcons, was significantly better at predicting both global and local quality compared with MQAPs using only structure or sequence based information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.