Abstract

This paper describes a new application in cultural heritage and other areas for a highly surface specific analytical technique originally developed for semiconductor research. The technique, ultra-low-energy dynamic secondary ion mass spectrometry (uleSIMS), is microdestructive, but has a sensitivity typically better than 1 atom in 10 6. It can provide an analysis within the top nm, or the top few μm of a surface, and gives chemical fingerprinting as well as atomic composition information. It is complimentary to other near-surface techniques such as SEM-EDX, XRD and electrochemical methods. Here, we describe the use of uleSIMS with SEM and SEM-EDX in a study of the tarnishing of museum silver. We report on the initial stages in the development of reference surfaces for control experiments, and on the data obtained from a lightly tarnished sterling silver test coupon exposed in a museum environment for 2 years. First results from a study of a XVII c. silver fragment, aimed at detecting differences in the tarnish or coating in different areas are also presented. Overall we show that the surface chemistry of all these surfaces is a complex mixture of that due to corrosion, contaminants deposited by solvents, polish media (in an overlayer which may only be a few nm thick), handling and the environment, as well as particulates – both from the environment and from polishes. However, surfaces with different histories show large variations in their uleSIMS spectra and depth profiles, and we attempt to lay the groundwork for the interpretation of these.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.