Abstract

BackgroundThe use of natural products based on aqueous extract of propolis and lycopene in the skin's protective mechanisms against UVA radiation was evaluated by means of experimental acute inflammation on rat paw edema. The aim of the present study was to evaluate the harmlessness of propolis - lycopene system through evaluation of skin level changes and anti-inflammatory action. The regenerative and protective effect of the aqueous propolis and lycopene extract is based on its richness in biologically active substances such as: tocopherols, flavonoids, amino acids, polyunsaturated fatty acids, the chlorophyll pigment, all substances with strong antioxidant activity, that modify the oxidative stress, mainly by reducing the prooxidant processes and enhancing the antioxidant ones. These substances participate in the synthesis of prostaglandins and phospholipids components of cell membrane thus enhancing skin protection mechanisms.ResultsThe experimental systems offered a sustained release of the drug, in vitro, for aim eight hours. The prepared formulations aim did not reveal a deteriorating effect on tissues. They proved a better therapeutic efficiency Compared to standard suspension, they provided a better therapeutic efficiency coupled with extended time interval of tested parameters (24 hours). Preliminary examination of tissues showed that the experimental formulations did not irritate. Local application of propolis and lycopene aqueous extract nanoemulsion has a high potential both regarding its efficiency (the analgesic effect) and therapeutic safety.ConclusionsThis study demonstrates that propolis and lycopene extract nanoemulsions, preparations contains active substances, can confer better therapeutic effects than those of the conventional formulations, based on local control-release of dozed form, for a longer period of time, which probably improve its efficiency and skin acceptance, meaning a better compliance. The information obtained in the present study suggests that administration of propolis and lycopene aqueous extract nanoemulsion is safe. The preparation can be useful for further preclinical studies lycopene embedded in aqueous propolis extract to be used in pharmaceuticals (targeted medical therapy).

Highlights

  • The use of natural products based on aqueous extract of propolis and lycopene in the skin’s protective mechanisms against UVA radiation was evaluated by means of experimental acute inflammation on rat paw edema

  • UVA radiation acts upon biological environments through oxidative mechanisms, correlated with the formation of reactive oxygen species: singlet oxygen, hydroxyl radicals, superoxide anions, hydrogen peroxide [9]

  • Aqueous extract of propolis has a high concentration of polyphenols and is standardized in polyphenol carboxylic acids, responsible, among other active substances, for its healing and anti-inflammatory action upon tegument affected by dandruff and seborrheic dermatitis

Read more

Summary

Introduction

The use of natural products based on aqueous extract of propolis and lycopene in the skin’s protective mechanisms against UVA radiation was evaluated by means of experimental acute inflammation on rat paw edema. The regenerative and protective effect of the aqueous propolis and lycopene extract is based on its richness in biologically active substances such as: tocopherols, flavonoids, amino acids, polyunsaturated fatty acids, the chlorophyll pigment, all substances with strong antioxidant activity, that modify the oxidative stress, mainly by reducing the prooxidant processes and enhancing the antioxidant ones. These substances participate in the synthesis of prostaglandins and phospholipids components of cell membrane enhancing skin protection mechanisms. Many cellular components are targed by reactive oxygen species generated by UVA irradiation [11,12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call