Abstract

The effect of reducing agents on the nitrosation of methylguanidine (MG) and on the in vitro activation of dimethylnitrosamine (DMN) was examined by measuring DNA-repair synthesis (unscheduled incorporation of [ 3H]TdR). shifts in alkaline sucrose gradients, frequency of chromosome aberrations, and clone-forming capacity of cultured human fibroblasts. The reducing agents examined were sodium ascorbate, cysteine, cysteamine, and propyl gallate. Since the short-term bioassays used can be quantitated, it has become relatively easy to detect the inhibitory action of reducing compounds on the nitrosation reaction of MG and metabolic activation (with S-9 preparation) of the precarcinogen DMN, to measure their effective dose range, and to establish the most effective ratios between inhibitory agent and reactant. The results indicate that DNA-repair synthesis is a suitable short-term test for studying the numerous combinations and permutations between several carcinogenic or non-carcinogenic agents, and for estimating the capacity of inhibitory agents to affect formation and activation of chemical carcinogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call