Abstract

Nitrosation of methylguanidine (MG) led to products that caused DNA fragmentation (shift in sedimentation profiles of velocity centrifugation through alkaline sucrose gradients), a DNA repair synthesis (unscheduled uptake of ( 3H]TdR), chromosome aberrations and a lethal effect of cultured human fibroblasts. The response of repair-deficient xeroderma pigmentosum cells did not differ from that of controls. The nitrosation of MG must be carried out at a pH level below 3, in order to obtain products that react with cellular DNA. The results show that a DNA repair synthesis of human fibroblasts appear to be a sensitive assay for carcinogenic and mutagenic nitrosation products which may be formed within an organism from non-carcinogenic compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call