Abstract

Nutritional indices were used to develop biochemical correlates of feeding and growth rates for juvenile summer flounder, Paralichthys dentatus (Linnaeus), from North Carolina (NC) and Delaware (DE). Six parameters (Fulton's condition K=104xweight/(length3), wet weight/dry weight, [protein], [RNA], [DNA], and RNA:DNA) were related to feeding and growth rates of fish from previously reported 10 to 14-d experiments at temperatures ranging from 2 to 20 °C with varying feeding levels (0 to 100% and libitum). RNA:DNA ratios were the best predictors of growth rates, but inclusion of a temperature term improved the relationship between RNA:DNA ratios and growth rate for Delaware fish. Feeding rates were poorly correlated with all parameters. RNA:DNA ratios of fish in the laboratory changed significantly within 1 d of starvation and refeeding at 16 °C. RNA:DNA of juvenile summer flounder collected from one site in Indian River Bay, DE and two sites in the Newport River Estuary, NC, between January and June 1992 were used to estimate in situ growth rates following settlement. Predicted growth rates in both estuaries were close to maximum (suggesting ad libitum feeding) until early May. Growth rates of juveniles from Delaware were <0% d-1 from December through early March, and were higher (0.6 to 3% d-1) from April through early June. However, growth rates of DE juveniles during May were <50% of maxinum. North Carolina juveniles had growth rates of 2 to 5% d-1 from February through early April. Juveniles from one of the Newport River sites (a marsh habitat) were also severely growth limited (<20% of maximum) after April. Prolonged periods of sub-optimal growth may be important to survival and recruitment of juvenile summer flounder in northern mid-Atlantic estuaries. A model is presented which illustrates the potential impact that small changes in temperature and growth limitation can have on recruitment success in both delaware and North Carolina estuaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call