Abstract

SUMMARY The sediments underlying the city of Lucerne (Switzerland) consisting of fluvio-lacustrine deposits of Quaternary age have the potential to produce strong amplification of the seismic wavefield. To obtain a reliable estimation of the deep soil structure, we combine different methodologies based on ambient noise recordings, such as single station horizontal to vertical ratios and three-component array analysis. Two novel techniques to estimate Rayleigh-wave ellipticity from ambient noise recordings are tested. These are based on a single- and a multistation approach, respectively. The first utilizes the continuous wavelet transform to perform a decomposition of the noise wavefield and to isolate and extract the Rayleigh-wave contribution. The second, conversely, relies on a high-resolution f–k method to achieve the same result. We compare the results from the two techniques to provide an evaluation of their capabilities and limitations. A two-step inversion scheme is then presented to improve resolution on the bedrock depth. In particular, the surface wave dispersion information is initially used to constrain the soft sediment part, while the Rayleigh-wave ellipticity peak is subsequently used for constraining the bedrock depth. It is shown that such an approach is beneficial to map the bedrock geometry over dense urban areas. The output velocity model is then used to compute the local seismic amplification by means of gridded 1-D approximation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call