Abstract

Doubled haploid (DH) genotypes from a genetic mapping population of Brassica oleracea were screened for ease of transformation. Candidate genotypes were selected based on prior knowledge of three phenotypic markers: susceptibility to Agrobacterium tumefaciens, shoot regeneration potential and mode of shoot regeneration. Mode of regeneration was found to be the most significant of the three factors. Transgenic plants were successfully obtained from genotypes that regenerated multiple shoots via a distinct swelling or callus phase. The absence of tissue culture blackening (associated with genotypes that formed callus) was found to be critical for transformation success. Transgenic shoots were obtained from genotypes that regenerated via an indirect callus mode, even when susceptibility to Agrobacterium was low. The most efficient genotype (DH AG1012) produced transgenic shoots at an average rate of 15% (percentage of inoculated explants giving rise to transgenic plants). The speed and efficiency of regeneration enabled the isolation of transgenic shoots 5-6 weeks after inoculation with A. tumefaciens. This line was also self-compatible, enabling the production of seed without the need for hand-pollination. A genetically uniform DH genotype, with an associated genetic map, make DH AG1012 highly desirable as a potential model B. oleracea genotype for studying gene function. The possibility of applying the same phenotypic tissue culture markers to other Brassica species is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call