Abstract
This article provides a comprehensive review of multiple imputation (MI), a technique for analyzing data sets with missing values. Formally, MI is the process of replacing each missing data point with a set of m > 1 plausible values to generate m complete data sets. These complete data sets are then analyzed by standard statistical software, and the results combined, to give parameter estimates and standard errors that take into account the uncertainty due to the missing data values. This article introduces the idea behind MI, discusses the advantages of MI over existing techniques for addressing missing data, describes how to do MI for real problems, reviews the software available to implement MI, and discusses the results of a simulation study aimed at finding out how assumptions regarding the imputation model affect the parameter estimates provided by MI.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have