Abstract
Recent studies have identified several chromosome regions that are altered in primary prostate cancer and prostatic carcinoma cell lines. These targeted regions may harbor genes involved in tumor suppression. We used multiplex fluorescence in situ hybridization (M-FISH) to screen for genetic rearrangements in four prostate cancer cell lines, LNCaP, LNCaP.FCG, DU145, and PC3, and compared our results with those recently obtained using spectral karyotyping (SKY). A number of differences was noted between abnormalities characterized by SKY and M-FISH, suggesting variation in karyotype evolution and characterization by these two methodologies. M-FISH analysis showed that hormone-resistant cell lines (DU145 and PC3) contained many genetic alterations (≥15 per cell), suggesting high levels of genetic instability in hormone-refractory prostate cancer. Most chromosome regions previously implicated in prostate cancer were altered in one or more of these cell lines. Several specific chromosome aberrations were also detected, including a del(4)(p14) and a del(6)(q21) in the hormone-insensitive cell lines, a t(1;15)(p?;q?) in LNCaP, LNCaP, and PC3, and a i(5p) in LNCaP.FCG, DU145, and PC3. These clonal chromosome abnormalities may pinpoint gene loci associated with prostate tumourigenesis, cancer progression, and hormone sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.