Abstract
Magnetoencephalography (MEG) is a neuroimaging technique that allows direct measurement of the magnetic fields generated by synchronised ionic neural currents in the brain with moderately good spatial resolution and high temporal resolution. Because chemical neuromodulation can cause changes in neuronal processing on the millisecond time-scale, the combination of MEG with pharmacological interventions (pharmaco-MEG) is a powerful tool for measuring the effects of experimental modulations of neurotransmission in the living human brain. Importantly, pharmaco-MEG can be used in both healthy humans to understand normal brain function and in patients to understand brain pathologies and drug-treatment effects. In this paper, the physiological and technical basis of pharmaco-MEG is introduced and contrasted with other pharmacological neuroimaging techniques. Ongoing developments in MEG analysis techniques such as source-localisation, functional and effective connectivity analyses, which have allowed for more powerful inferences to be made with recent pharmaco-MEG data, are described. Studies which have utilised pharmaco-MEG across a range of neurotransmitter systems (GABA, glutamate, acetylcholine, dopamine and serotonin) are reviewed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have