Abstract

Road potholes have a well-known impact on driving quality and safety. Therefore, timely mitigation of potholes is critical for the safety of road users. However, efficient and timely maintenance relies on the presence of an effective process for pothole detection. Currently, transportation agencies primarily rely on manual inspection and road user reporting. These methods are subjective, prone to inaccuracy, and some are also laborious and time-consuming. An ideal pothole detection system would be accurate, objective, automated, and relatively inexpensive. In this context, accuracy encompasses three distinct performance areas: detection, localization, and size estimation. This study explores the potential of utilizing a mobile light detection and ranging (LiDAR) for accurate detection and size estimation, along with a global navigation satellite system (GNSS) receiver for localization, to develop an effective pothole surveillance system. To achieve this objective, the study proposes a four-step framework. Firstly, the LiDAR data are processed to generate ring-wise cross-sectional images. Secondly, a deep learning object detection network is trained to predict the presence and size of potholes. Thirdly, the ring-wise inferences are aggregated to produce a final decision. Lastly, the aggregated inferences are synchronized with GNSS locations to generate inspection maps. The system’s performance was validated using multiple road strips, never seen by the model, containing potholes of different sizes and shapes. The results demonstrated the effectiveness and accuracy of the proposed system. Overall, this research contributes to the research on LiDAR-based pothole inspection by proposing a novel four-step framework and incorporating it into an end-to-end pothole detection system, which can greatly improve the efficiency of pothole maintenance and enhance the safety of road users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.