Abstract

A theoretical model is presented for determining the edge moment factors, the transverse deflections and the interfacial stresses of the balanced adhesive single-lap joint (SLJ). Based on the flexible interface theory, the improved one-dimensional beam model incorporates simultaneously the effects of interfacial compliances, the overlap geometric nonlinearity and the transverse shear deformations for the adherends. On the basis of normal and tangential displacement compatibility condition for the flexible interface, two sets of fully coupled governing equations concerning rotation of transverse normal and longitudinal displacement of adherends are constructed, from which the improved solutions for the edge moment factors, the transverse deflections, and the interfacial stresses can be obtained. The applicability and accuracy of the improved one-dimensional beam model are validated by comparing the present solutions with the results of the classical model, non-linear finite element analysis, and experimental results. Finally, the effects of the interface compliances on the adhesive stresses distributions of the balanced SLJ are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call