Abstract
A deep convolutional neural network (DCNN) was used for microstructure reconstruction using artificial intelligence (MR-AI) by predicting local average fiber orientation distributions (FOD) in a 3D prepreg platelet molded composite (PPMC) pin bracket. To train the MR-AI model, surface strain fields from residual stresses simulated in PPMC plates were used as the input to the DCNN. A training dataset included PPMC plates with various degrees of global fiber alignment, based on the information obtained from high-fidelity flow simulation of a pin bracket. The MR-AI model was then deployed to analyze FOD in the 3D pin bracket by conducting thermo-elastic residual stress analysis. Initially, the MR-AI model was established entirely on the synthetic simulation data. Then, a μCT scan of a physically molded pin bracket was used to create a finite element model that provided data for additional validation of the DCNN model. For the μCT scan finite element pin bracket the MR-AI model predicted the distribution of fiber orientation tensor components with MAE of 0.10 indicating a global prediction error of 10 %. For the flow simulated pin bracket, the MR-AI model predicted the distribution of fiber orientation tensor components with a global prediction error of 11 %. The MR-AI model showed the ability to predict regions of varying alignment in the base and flange of the pin bracket. The proposed MR-AI methodology allows for rapid prediction of FOD in geometrically complex parts and offers a promising path to detecting unique fiber orientation states in molded components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.