Abstract
The present work explores a data mining approach to study the fabrication of prednisolone-loaded chitosan nanoparticles and their properties. Eight PLC formulations were prepared using an automated adaptation of the antisolvent precipitation method. The PLCs were characterized using dynamic light scattering, infrared spectroscopy, and drug release studies. Results showed that that the effective diameter, loading capacity, encapsulation efficiency, zeta potential, and polydispersity of the PLCs were influenced by the concentration and molecular weight of chitosan. The drug release studies showed that PLCs exhibited significant dissolution enhancement compared to pure prednisolone crystals. Principal components analysis and partial least squares regression were applied to the infrared spectra and the DLS data to extract higher-order interactions and correlations between the critical quality attributes and the diameter of the PLCs. Principal components revealed that the spectra clustered according to the type of material, with PLCs forming a separate cluster from the raw materials and the physical mix. PLS was successful in predicting the ED of the PLCs from the FTIR spectra with R2 = 0.98 and RMSE = 27.18. The present work demonstrates that data mining techniques can be useful tools for obtaining deeper insights into the fabrication and properties of PLCs, and for optimizing their quality and performance. It also suggests that FTIR spectroscopy can be a rapid and non-destructive method for predicting the ED of PLCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.