Abstract

Chitosan (CS) nanoparticles for drug delivery were fabricated by an electrospraying method. The effects of CS molecular weight on electrospraying were investigated. The size and morphology of CS particles were strongly influenced by CS molecular weight. Besides, CS concentration, electrical field, acetic acid concentration, and solution feeding rate in the electrospraying process were also studied. To evaluate the potential of electrosprayed CS nanoparticles in drug delivery, indomethacin (ID) was used as a model drug, where the encapsulation efficiency, the loading capacity, and the releasing profiles were identified. The CS-ID spherical nanoparticles were fabricated by the electrospraying technique, with the average diameter of 340 nm. Zeta potential of the ID-CS particles indicated that the particles were stable in the suspension. The encapsulation efficiency (EE) and loading capacity (LC) of ID were higher for 150-kDa CS than for 310-kDa CS. The EE of ID in electrosprayed CS particles was higher than that in particles prepared by other methods. The release profiles revealed that there were two stages for releasing and the long-term delivery could be obtained in the second stage. In summary, this research optimized the electrospraying process for the fabrication of CS nanoparticles and demonstrated the potential of electrosprayed CS nanoparticles as a drug carrier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.