Abstract

The use of Large Eddy Simulation (LES) is increasingly investigated. However, the LES simulations are computationally demanding, due to the transient nature of the flow computations and the required mesh resolution. Furthermore, the subgrid scale model used for modeling the unresolved flow motions is normally a-priori selected. In an unstructured mesh where the mesh resolution can vary significantly, subgrid scale models should be applied carefully. The present study is aimed to investigate the use of an advanced approach to reduce mesh size by means of a Dynamic Grid Adaptation (DGA) algorithm and to apply a LES subgrid scale model based on local mesh size and flow structure. In this work the DGA algorithm is coupled with the LES turbulence model and made an integral part of the turbulence model. Furthermore, this work has integrated two different LES subgrid scale models which are locally applied to the element in a dynamic manner, dependent on mesh size and flow structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.