Abstract
A shear instability criterion can provide a consistent approach to the onset of local necking in sheet metal forming under biaxial stretching. The neck is anticipated to initiate in the direction of pure shear when the shear stress attains some critical value. The yield function proposed by Hill is employed and the material is assumed to display only normal anisotropy. Empirically it is found that the additional material parameter required by this yield function is simply related to R, the coefficient of normal anisotropy, for a number of materials. This allows the limit strain to be predicted in terms of three well established plastic properties, viz. work hardening coefficient, coefficient of normal anisotropy and initial pre-strain. The influence of these on the limit strain curve is analysed and the coefficient of work hardening shown to play the most important role. Data available in the literature are employed in a comparison of the present theory with that due to Marciniak. In general the predicted limit strains are in reasonable agreement with the trend of experimental results for a wide range of materials. In the case of isotropic materials with work hardening coefficients in the range 0·2-0·6 predictions from the present theory are almost identical with those from that presented by Stören and Rice. The theory presented here exhibits a good correlation with experimental limit strains for materials with high work hardening coefficients, of approx. 0·4 or more. Generally, for low work hardening materials, with coefficients of 0·25 or less, the shear instability theory tends to an underestimate of limit strains and a Marciniak type of analysis may be more appropriate. However, bearing in mind the scatter of the experimental data the present theory constitutes a safe lower bound on limit strains and, in addition, has the advantage of simplicity in the mathematical calculation required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.