Abstract
Present work analyses mathematical modelling to predict the onset of localized necking and rupture by shear in industrial processes of sheet metal forming of aluminium alloy 5083 such as biaxial stretching and deep drawing. Whereas the AA5083 sheet formability at room temperature is moderate, it increases significantly at high temperature. The Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM, of AA 5083 sheet was assessed experimentally by tensile and Nakajima testing performed at room and 400°C temperatures. Tensile test specimens at 0o, 45o and 90o to the direction of rolling (RD) and Nakazima type specimens at 0o RD of aluminium AA5083 were fabricated. Simple tensile tests at room and 400°C temperatures were performed to obtain the coefficients of plastic anisotropy and material strain and strain rate hardening behavior at different temperatures. Nakazima biaxial tests at room and high temperature, employing spherical punch were carried out to plot the limit strains in the negative and positive quadrant of the Map of Principal Surface Limit Strains, MPLS, of aluminium AA5083 sheet. The “Forming Map of Principal Surface Limit Strains”, MPLS, shows the experimental FLC which is the plot of principal true strains in the sheet metal surface (ε1,ε2), occurring at critical points obtained in laboratory formability tests or in the fabrication process of parts. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and rupture by induced shear stress. Therefore, two kinds of limit strain curves can be plotted in the forming map: the local necking limit curve FLC-N and the shear stress rupture limit curve FLC-S. Localized necking is theoretically anticipated to occur by two mathematical models: Marciniak-Kuczynski modelling, hereafter M-K approach, and D-Bressan modeling. Prediction of limit strains are presented and compared with the experimental FLC. The shear stress rupture criterion modeling by Bressan and Williams and M-K models are employed to predict the forming limit strain curves of AA5083 aluminium sheet at room and 400°C temperatures. As a result of analysis, a new concept of ductile rupture by shear stress and local necking are proposed. M-K model has good agreement with both D-Bressan models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.