Abstract

The use of an instrumented scanning vehicle has become the center of focus for bridge health monitoring (BHM) due to its cost efficiency, mobility, and practicality. However, indirect BHM still faces challenges such as the effects of road roughness on vehicle response, which can be avoided when the vehicle is in a stationary condition. This paper proposes a baseline-free method to detect bridge damage using a stationary vehicle. The proposed method is implemented in three steps. First, the contact-point response (CPR) of the stationary vehicle is computed. Secondly, the CPR is decomposed into intrinsic mode functions (IMFs) using the variational mode decomposition (VMD) method. Finally, instantaneous amplitude (IA) of a high frequency IMF is computed. The peak represents the existence and location of the damage. A finite element model of a bridge with damage is created. The results show that the method can identify the damage location under different circumstances, such as a vehicle with and without damping, different speeds of the moving vehicle, different sizes of damage, and multiple damage. A higher speed was found to provide better visibility of damages. In addition, smaller damage was less visible than wider damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.