Abstract
To address the challenges associated with nonlinearity, non-stationarity, susceptibility to redundant noise interference, and the difficulty in extracting fault feature signals from rolling bearing signals, this study introduces a novel combined approach. The proposed method utilizes the variational mode decomposition (VMD) and K-singular value decomposition (K-SVD) algorithms to effectively denoise and enhance the collected rolling bearing signals. Initially, the VMD method is employed to separate the overall noise into intrinsic mode functions (IMFs), reducing the noise content within each IMF. To optimize the mode component, K, and the penalty factor, α, in VMD, an improved arithmetic optimization algorithm (IAOA) is employed. This ensures the selection of optimal parameters and the decomposition of the signal into a set of IMFs, forming the original dictionary. Subsequently, the signals are decomposed into multiple IMFs using VMD, and an original dictionary is constructed based on these IMFs. K-SVD is then applied to the original dictionary to further reduce the noise in each IMF, resulting in a denoised and enhanced signal. To validate the efficacy of the proposed method, rolling bearing signals collected from Case Western Reserve University (CWRU) and thrust bearing test rigs were utilized. The experimental results demonstrate the feasibility and effectiveness of the proposed approach in denoising and enhancing the rolling bearing signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.