Abstract
BackgroundOsteochondral injuries have been treated by a variety of methods, each having its own drawbacks. The purpose of this study was to determine the biomechanical feasibility of using a hydrogel implant replacement for an osteochondral core defect. The hypothesis of this study was that the contact pressure of the native knee can be recreated with the use of a hydrogel implant. MethodsSix cadaver knees were tested in a knee simulator while contact pressures were measured on the tibial plateau. Pressure data was collected in the intact knee, after coring of the condyle and after insertion of a hydrogel implant. Following 1000 gait cycles of fatigue testing, each knee was taken through axial loading indentation testing where the stiffness of the in situ implant was compared to the contralateral condyle. FindingsWhile coring significantly reduced the peak pressure at the coring site from 1.8 MPa in the intact knee to 0.0 MPa after coring, implant insertion significantly increased it to 1.2 MPa. There was no significant difference in the peak pressures or the average pressures at the hole location between the intact knee and following implant insertion. After fatigue testing, no macroscopic loosening or implant damage was observed. Based on indentation testing, the stiffness of the medial condyle, 157 N/mm, was significantly less than the lateral condyle, 696 N/mm. InterpretationThe insertion of the hydrogel implant was able to achieve restoration of contact pressures in the knee supporting the viability of hydrogel implants in the treatment of osteochondral lesions of the knee.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.