Abstract
Hand, foot, and mouth disease (HFMD) is a common viral childhood illness caused most commonly by enterovirus 71 (EV71) and coxsackievirus A16. The pathogenesis of EV71 has been extensively studied, and the regulation of the host immune response is suspected to aggravate the serious complications induced by EV71. Our previous research showed that EV71 infection significantly increased the release of circulating interleukin (IL)-6, IL-10, IL-13, and IL-27. Notably, these cytokines are related to the EV71 infection risk and clinical stage. Polyamines are compounds that are ubiquitous in mammalian cells and play a key role in various cellular processes. Several studies have shown that targeting polyamine metabolic pathways can reduce infections caused by viruses. However, the significance of polyamine metabolism in EV71 infection remains largely unknown. Serum samples from 82 children with HFMD and 70 healthy volunteers (HVs) were collected to determine the polyamine metabolites spermidine (SPD) and spermine (SPM), and IL-6 levels. In addition, peripheral blood mononuclear cells (PBMCs) were treated with EV71 viral protein 1 (VP1) and EV71 VP4, and the cells and supernatant were then collected to analyze the expression of polyamine metabolism-related enzymes by western blot. The data were analyzed using GraphPad Prism 7.0 software (USA). The serum polyamine metabolites SPD and SPM were elevated in the HFMD patients, especially in the EV71-infected children. Further, a positive correlation was found between serum SPD and IL-6 levels in the EV71-infected children. We also found that the upregulation of peripheral blood polyamine metabolites in the EV71-infected HFMD children was related to EV71 capsid protein VP1, but not VP4. VP1 may promote the expression of polyamine metabolism-related enzymes and promote the production of polyamine metabolites, thereby upregulating the SPD/nuclear factor kappa B/IL-6 signaling pathway. However, VP4 has the opposite effect in this process. Our results suggest that EV71 capsid protein may regulate the polyamine metabolic pathways of infected cells in a variety of ways. This study provides insights into the mechanism of EV71 infection and polyamine metabolism and has good reference value for the development of EV71 vaccine.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have