Abstract

ALICE is a general purpose experiment dedicated to the study of nucleus–nucleus collisions at LHC. After more than 3 years of successful operation, an upgrade of the apparatus during the second long shutdown of LHC (LS2) in 2017/18 is in preparation. One of the major goals of the proposed upgrade is to extend the physics reach for rare probes at low transverse momentum. The reconstruction of the rare probes requires a precise determination of the primary and secondary vertices that is performed in ALICE by the Inner Tracking System (ITS). The present ITS made of 6 layers of three technologies of silicon devices allows, for example, to reconstruct D mesons with the transverse momentum down to ∼2GeV/c.Further extension of this range towards lower pT requires the installation of the new ITS consisting of 7 layers of silicon detectors with significantly better single point resolution and reduced material budget. It is expected that the new system will allow to improve the impact parameter resolution by a factor of ∼3. Moreover, the data rate capability of the upgraded ITS should be significantly improved in order to exploit the full expected LHC lead–lead interaction rate of 50kHz, almost two orders of magnitude above the present readout rate.The present contribution describes first the requirements for the new ITS followed by the conceptual design of the system and its expected performance. Secondly, an overview of the different R&D activities from the concept towards the final detector is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.