Abstract
The nonsense-mediated mRNA decay pathway functions to degrade aberrant mRNAs that contain premature translation termination codons. In Saccharomyces cerevisiae, the Upf1, Upf2, and Upf3 proteins have been identified as trans-acting factors involved in this pathway. Recent results have demonstrated that the Upf proteins may also be involved in maintaining the fidelity of several aspects of the translation process. Certain mutations in the UPF1 gene have been shown to affect the efficiency of translation termination at nonsense codons and/or the process of programmed -1 ribosomal frameshifting used by viruses to control their gene expression. Alteration of programmed frameshift efficiencies can affect virus assembly leading to reduced viral titers or elimination of the virus. Here we present evidence that the Upf3 protein also functions to regulate programmed -1 frameshift efficiency. A upf3-Delta strain demonstrates increased sensitivity to the antibiotic paromomycin and increased programmed -1 ribosomal frameshift efficiency resulting in loss of the M1 virus. Based on these observations, we hypothesize that the Upf proteins are part of a surveillance complex that functions to monitor translational fidelity and mRNA turnover.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.