Abstract
The friction and wear behaviour of 316 stainless steel in CO 2 has been investigated in the load range 8–50 N from 20 to 600°C. Wear transitions occurred at all temperatures but were load-dependent. At and below 300°C, wear transitions only took place at low loads, whereas above 300°C transitions were observed at all loads. The low temperature wear transition, representing an order of magnitude decrease in wear rate, was associated with a change in friction behaviour. The friction force across the specimen was initially widely fluctuating but after a time, which did not necessarily coincide with the wear transition, became much smoother. The smoother sliding is thought to indicate a trend to oxide-oxide contacts. At higher temperatures wear transitions result in a two orders of magnitude reduction in wear. The corresponding friction transition was similar to the low temperature friction change but also included a marked temporary drop in the coefficient of friction. Pits or troughs up to 450 μm deep were seen in wear scars above 400°C. It is proposed that isolated sections of grooves formed during the initial stages of wear become back-filled with loosely adhering oxide particles. These troughs are then further deepened, possibly by abrasive fretting action of the semi-fluid oxide material.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have