Abstract
We complete the so-called Universal One-Loop Effective Action (UOLEA) with effects of gravity and provide a systematic approach to incorporate higher dimensional operators in curved spacetime. The functional determinant stemming from the path integral is computed using the Covariant Derivative Expansion (CDE), in a momentum representation that does not rely on a specific choice of coordinate to be defined, as it often is. This efficient approach manifests an interesting novelty as it allows to integrate out chiral fermions in curved spacetime in a direct manner leading to new operators involving the curvature, and provides a new alternative to the use of Feynman diagrams in that regard. The method presented would very well fit in a code that performs CDE, offering the possibility to integrate out at one-loop fields on a curved spacetime background, including spin-2 fields, like the graviton. Eventually these results should provide an interesting way to study low energy effects of UV completions of gravity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have