Abstract

This study investigated the unique contribution of motor ability to visuospatial working memory (VSWM) and neuroelectric activity in school-age children. Seventy-six children aged 8.7 ± 1.1 years participated in this cross-sectional study. We assessed aerobic fitness using the 20-m endurance shuttle run test, muscular fitness (endurance, power) using a standard test battery, and motor ability (manual dexterity, ball skills, and static and dynamic balance) using the Movement Assessment Battery for Children. A modified delayed match-to-sample test was used to assess VSWM and the P3 component of event-related potentials. Hierarchical regression analyses indicated that greater aerobic fitness was associated with smaller coefficient of variation of reaction time (p=.008), greater muscular fitness was associated with higher response accuracy (p=.022), greater motor ability was associated with higher response accuracy (p < .001) and increased P3 mean amplitude (p < .001) after controlling for age. Furthermore, the positive associations of motor ability with response accuracy (p=.001) were independent of muscular fitness. The findings from this study provide new insight into the differential associations between health-related fitness domains and VSWM, highlighting the influence of motor ability on brain health and cognitive development during childhood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.