Abstract

This study investigated the unique contribution of motor ability to visuospatial working memory (VSWM) and neuroelectric activity in school-age children. Seventy-six children aged 8.7 ± 1.1 years participated in this cross-sectional study. We assessed aerobic fitness using the 20-m endurance shuttle run test, muscular fitness (endurance, power) using a standard test battery, and motor ability (manual dexterity, ball skills, and static and dynamic balance) using the Movement Assessment Battery for Children. A modified delayed match-to-sample test was used to assess VSWM and the P3 component of event-related potentials. Hierarchical regression analyses indicated that greater aerobic fitness was associated with smaller coefficient of variation of reaction time (p=.008), greater muscular fitness was associated with higher response accuracy (p=.022), greater motor ability was associated with higher response accuracy (p < .001) and increased P3 mean amplitude (p < .001) after controlling for age. Furthermore, the positive associations of motor ability with response accuracy (p=.001) were independent of muscular fitness. The findings from this study provide new insight into the differential associations between health-related fitness domains and VSWM, highlighting the influence of motor ability on brain health and cognitive development during childhood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.