Abstract

Retinal ganglion cells (RGCs) demonstrate a large range of variation in their ionic channel properties and morphologies. These cell-specific properties are responsible for the unique way they process synaptic inputs. A cell-specific modeling approach allows us to examine the functional significance of regional membrane channel expression and cell morphology. ON and OFF RGC models based on accurate biophysics and realistic representation of morphologies were used to study the contribution of different ion channel properties and spatial structure of neurons to RGC electrical activity. Using this approach, morphologically-complex retinal neurons such as amacrine cells or RGCs can be modelled and their interactions and processing can be better understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.