Abstract
The aim of the present study was to evaluate the changes caused by adjuvant-induced arthritis in liver mitochondria and to investigate the effects of the nonsteroidal anti-inflammatory drug nimesulide. The main alterations observed in liver mitochondria from arthritic rats were: higher rates of state IV and state III respiration with beta-hydroxybutyrate as substrate; reduced respiratory control ratio and impaired capacity for swelling dependent on beta-hydroxybutyrate oxidation. No alterations were found in the activities of NADH oxidase and ATPase. Nimesulide produced: (1) stimulation of state IV respiration; (2) decrease in the ADP/O ratio and in the respiratory control ratio; (3) stimulation of ATPase activity of intact mitochondria; (4) inhibition of swelling driven by the oxidation of beta-hydroxybutyrate; (5) induction of passive swelling due to NH(3)/NH(4)+ redistribution. The activity of NADH oxidase was insensitive to nimesulide. Mitochondria from arthritic rats showed higher sensitivity to nimesulide regarding respiratory activity. The results of this work allow us to conclude that adjuvant-induced arthritis leads to quantitative changes in some mitochondrial functions and in the sensitivity to nimesulide. Direct evidence that nimesulide acts as an uncoupler was also presented. Since nimesulide was active in liver mitochondria at therapeutic levels, the impairment of energy metabolism could lead to disturbances in the liver responses to inflammation, a fact that should be considered in therapeutic intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.