Abstract
The uncertainty relation is a distinctive characteristic of quantum theory. The uncertainty is essentially rooted in quantum states. In this work we regard the uncertainty as an intrinsic property of quantum state and characterize it systematically with respect to given projective measurement. Some basic concepts about uncertainty are reformulated in this context. We prove and get the form of the uncertainty preserving operations. The quantum states with maximal uncertainty are characterized. A universal decomposition of uncertainty into classical uncertainty and quantum uncertainty is provided. Furthermore, a unified and general relation among uncertainty, coherence and coherence of assistance is established. These results are independent of any explicit uncertainty measure. At last, we propose a new uncertainty measure called the geometric uncertainty based on the fidelity and link it with the geometric coherence.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have