Abstract
We prove that a minimal immersion of a complete Riemannian manifold M into another complete noncompact Riemannian manifold N of positive curvature must have an unbounded image provided that M has scalar curvature bounded away from −∞. This extends the unboundedness theorems of Gromoll and Meyer for complete geodesics and of Galloway and Rodriguez for parabolic minimal surfaces. Furthermore, we prove that in case M is of codimension 1, only the Ricci curvature and not necessarily the full sectional curvature of the ambient space N need be positive in order for the same conclusion to hold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.