Abstract

We investigate the escape rate of the Brownian motion $W_x (t)$ on a complete noncompact Riemannian manifold. Assuming that the manifold has at most polynomial volume growth and that its Ricci curvature is bounded below, we prove that $$\dist (W_x (t), x) \leq \sqrt{Ct \log t}$$ for all large $t$ with probability 1. On the other hand, if the Ricci curvature is nonnegative and the volume growth is at least polynomial of the order $n > 2$ then $$\dist (W_x (t), x) \geq \frac{\sqrt{Ct}}{\log^{1/(n-2)} t \log \log^{(2+\varepsilon)/(n-2)} t} again for all large $t$ with probability 1 (where $\varepsilon > 0$).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call