Abstract

The terminal differentiation of melanocytes is associated with the transcriptional activation of genes responsible for pigment production such as tyrosinase. Pigment cell-specific transcription factors, such as Mitf, as well as specific proximal and distal regulatory elements (DRE) are implicated in the tight control of tyrosinase expression during development and adulthood. Proper tyrosinase expression in melanocytes depends upon the presence of a DRE that is located at -15 kb and provides enhancer activity via a central element termed core-enhancer. In this report, we show that the transcription factors Sox10, Mitf and USF-1 are able to activate the core-enhancer in luciferase reporter assays. Comparative sequence analysis identified evolutionarily motifs resembling Sox10 binding sites that were required for full enhancer activity in melanoma cells and in tyrosinase::lacZ transgenic mice. Sox10 was able to bind the DRE in vitro and mutation of the conserved motifs abolished the enhancer transactivation mediated by Sox10. In addition, two highly conserved CAGCTG E-box motifs were identified that were also required for enhancer activity and for transactivation by Mitf. The results suggest that Sox10 directly, and Mitf, most likely indirectly, activate the tyrosinase enhancer, underlining the contribution of Sox10 to tyrosinase gene regulation in melanocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.