Abstract

Type X collagen, expressed by hypertrophic chondrocytes, consists of homotrimeric molecules with subunits that are only about one-half the size of the polypeptides of fibrillar collagens. In this report we describe for the first time the complete primary structure of type X collagen, based on cloning and sequencing of cDNA and genomic DNA. A comparison between the nucleotide sequences of the cDNA and genomic DNA clones has also allowed determination of the complete exon structure of the type X collagen gene. Our results demonstrate that the primary translation product of the chicken type X collagen mRNA is 682 amino acid residues long with a calculated molecular mass of 67,317 Da for the nonhydroxylated form. This calculated molecular mass is in excellent agreement with the observed electrophoretic mobility of cell-free translation products with both poly(A)+ RNA isolated from chondrocytes as well as RNA transcribed in vitro from a full length cDNA construct. It is also in agreement with the observed size of type X collagen polypeptides isolated from the media of cultured hypertrophic chondrocytes. Thus, our data exclude the possibility of a high molecular weight precursor form of type X collagen. Our results also confirm that the chicken type X gene has a most unusual exon structure when compared to other vertebrate collagen genes. The gene has only three exons. One exon (97 base pairs (bp)), codes for most of the 5'-untranslated region of the mRNA, a second exon (159 bp) codes for the signal peptide and a short non-triple-helical domain, while the third exon (2136 bp) contains the coding region for the entire triple-helix and a large non-triple-helical carboxyl domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.