Abstract
Since its inception four decades ago the two-process model introduced by Borbély has provided the conceptual framework to explain sleep–wake regulation across many species, including humans. At its core, high level notions of circadian and homeostatic processes are modelled with a low dimensional description in the form of a one dimensional nonautonomous and nonsmooth flow, with the rate of change of homeostatic sleep pressure switching at specific times. These events in time can be described by an implicit map from one switching time to another and have given rise to an elegant mathematical description of periodic orbits and their instabilities using the theory of iterated maps. In this paper we show that an equivalent description can be obtained from a direct analysis of the underlying nonsmooth flow. We further show how to construct the Lyapunov exponent of the nonsmooth flow and use this to uncover a more detailed picture of the Arnol’d tongue structure of the model.Given the growing interest in studying networks of sleepers, where interactions may occur continuously throughout the day–night cycle and not just at event times, we advocate for the future use of techniques from nonsmooth dynamical systems in studying networks of the two-process model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.