Abstract

Acetyl-CoA synthase (ACS) is a central enzyme in the carbon and energy metabolism of certain anaerobic species of bacteria and archaea that catalyzes the direct synthesis and cleavage of the acetyl CC bond of acetyl-CoA by an unusual enzymatic mechanism of special interest for its use of organonickel intermediates. An Fe4S4 cluster associated with a proximal, reactive Nip and distal spectator Nid comprise the active site metal complex, known as the A cluster. Experimental and theoretical methods have uncovered much about the ACS mechanism, but have also opened new unanswered questions about the structure and reactivity of the A cluster in various intermediate forms. Here we report a method for large scale isolation of ACS with its A cluster in the acetylated state. Isolated acetyl-ACS and the two-electron reduced ACS, produced by acetyl-ACS reaction with CoA, were characterized by UV–visible and EPR spectroscopy. Reactivity with electron acceptors provided an assessment of the apparent Em for two-electron reduction of the A cluster. The results help to distinguish between alternative electronic states of the reduced cluster, provide evidence for a role of the Fe/S cluster in catalysis, and offer an explanation of why one-electron reductive activation is observed for a reaction cycle involving 2-electron chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call