Abstract

In the current paper we present a new proof of the small ball inequality in two dimensions. More importantly, this new argument, based on an approach inspired by lacunary Fourier series, reveals the first formal connection between this inequality and discrepancy theory, namely the construction of two-dimensional binary nets, i.e. finite sets which are perfectly distributed with respect to dyadic rectangles. This relation allows one to generate all possible point distributions of this type. In addition, we outline a potential approach to the higher-dimensional small ball inequality by a dimension reduction argument. In particular this gives yet another proof of the two-dimensional signed (i.e. coefficients $$\pm 1$$ ) small ball inequality by reducing it to a simple one-dimensional estimate. However, we show that an analogous estimate fails to hold for arbitrary coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.