Abstract
The Lovasz Local Lemma due to Erdős and Lovasz (in Infinite and Finite Sets, Colloq. Math. Soc. J. Bolyai 11, 1975, pp. 609–627) is a powerful tool in proving the existence of rare events. We present an extension of this lemma, which works well when the event to be shown to exist is a conjunction of individual events, each of which asserts that a random variable does not deviate much from its mean. As applications, we consider two classes of NP-hard integer programs: minimax and covering integer programs. A key technique, randomized rounding of linear relaxations, was developed by Raghavan & Thompson (Combinatorica, 7 (1987), pp. 365–374 ) to derive good approximation algorithms for such problems. We use our extension of the Local Lemma to prove that randomized rounding produces, with non-zero probability, much better feasible solutions than known before, if the constraint matrices of these integer programs are column-sparse (e.g., routing using short paths, problems on hypergraphs with small dimension/degree). This complements certain well-known results from discrepancy theory. We also generalize the method of pessimistic estimators due to Raghavan (J. Computer and System Sciences, 37 (1988), pp. 130–143 ), to obtain constructive (algorithmic) versions of our results for covering integer programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.