Abstract

Plant petioles can be considered as hierarchical cellular structures, displaying geometric features defined at multiple length scales. Their macroscopic mechanical properties are the cumulative outcome of structural properties attained at each level of the structural hierarchy. This work appraises the compliance of a rhubarb stalk by determining the stalk’s bending and torsional stiffness both computationally and experimentally. In our model, the irregular cross-sectional shape of the petiole and the layers of the constituent tissues are considered to evaluate the stiffness properties at the structural level. The arbitrary shape contour of the petiole is generated with reasonable accuracy by the Gielis superformula. The stiffness and architecture of the constituent layered tissues are modeled by using the concept of shape transformers so as to obtain the computational twist-to-bend ratio for the petiole. The rhubarb stalk exhibits a ratio of flexural to torsional stiffness 4.04 (computational) and 3.83 (experimental) in comparison with 1.5 for isotropic, incompressible, circular cylinders, values that demonstrate the relative structural compliance to flexure and torsion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.