Abstract

Combination therapy with anti-HER2 agents and immunotherapy has demonstrated significant clinical benefits in gastric cancer (GC), but the underlying mechanism remains unclear. In this study, we used multiplex immunohistochemistry to assess the changes of the tumor microenvironment in 47 advanced GC patients receiving anti-HER2 therapy. Additionally, we performed single-cell transcriptional sequencing to investigate potential cell-to-cell communication and molecular mechanisms in four HER2-positive GC baseline samples. We observed that post-treated the infiltration of NK cells, CD8+ T cells, and B lymphocytes were significantly higher in patients who benefited from anti-HER2 treatment than baseline. Further spatial distribution analysis demonstrated that the interaction scores between NK cells and CD8+ T cells, B lymphocytes and M2 macrophages, B lymphocytes and Tregs were also significantly higher in benefited patients. Cell-cell communication analysis from scRNA sequencing showed that NK cells utilized CCL3/CCL4-CCR5 to recruit CD8+ T cell infiltration. B lymphocytes employed CD74-APP/COPA/MIF to interact with M2 macrophages, and utilized TNF-FAS/ICOS/TNFRSR1B to interact with Tregs. These cell-cell interactions contribute to inhibit the immune resistance of M2 macrophages and Tregs. Our research provides potential guidance for the use of anti-HER2 therapy in combination with immune therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.