Abstract

AbstractDynamic ice-sheet models are used to assess the contribution of mass loss from the Greenland ice sheet to sea-level rise. Mass transfer from ice sheet to ocean is in a large part through outlet glaciers. Bed topography plays an important role in ice dynamics, since the acceleration from the slow-moving inland ice to an ice stream is in many cases caused by the existence of a subglacial trough or trough system. Problems are that most subglacial troughs are features of a scale not resolved in most ice-sheet models and that radar measurements of subglacial topography do not always reach the bottoms of narrow troughs. The trough-system algorithm introduced here employs mathematical morphology and algebraic topology to correctly represent subscale features in a topographic generalization, so the effects of troughs on ice flow are retained in ice-dynamic models. The algorithm is applied to derive a spatial elevation model of Greenland subglacial topography, integrating recently collected radar measurements (CReSIS data) of the Jakobshavn Isbræ, Helheim, Kangerdlussuaq and Petermann glacier regions. The resultant JakHelKanPet digital elevation model has been applied in dynamic ice-sheet modeling and sea-level-rise assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call