Abstract

The stability of the tri-mu-hydrido-bis[(eta(5)-C(5)Me(5))aluminum], Cp*(2)Al(2)H(3), 1 is studied at B3LYP/6-311+G(d,p), CCSD(T)//B3LYP/6-311+G(d,p) and MP4//B3LYP/6-311+G(d,p) levels. The coordination between Al(2)H(3) entity and both C(5)(CH(3))(5) groups is ensured by strong electrostatic and orbital interactions. The orbital analysis of the interacting fragments shows that Al(2)H(3) acceptor, which keeps its tribridged structure, implies the vacant [Formula: see text] and five antibonding ([Formula: see text], e' and e'') molecular orbitals to interact with two orbitals mixtures, b(1) and e" of the donors (C(5)Me(5)). When we take into account the solvent effect, the computation shows that 1 seems to be stable in condensed phase with a tribridged bond between the Al atoms [Cp*Al(micro-H)(3)AlCp*], whereas in the gas phase, the monobridged Cp*AlH(micro-H)AlHCp* 4 is slightly favored (4 kcal mol(-1)). We propose that 1 could be prepared thanks to Cp*Al (2) and Cp*AlH(2) (3) reaction in acidic medium. The experimental treatment of this type of metallocenes would contribute to the development of the organometallic chemistry of 13th group elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.