Abstract
The depositional system within Chasma Boreale is unique in that it contains active aeolian environments, expressed as dune fields, and active cryosphere environments, present as layered ice deposits, as well as environments that transition between these. This work presents a new analysis of the Chasma Boreale sediment system that creates an interpretative framework addressing: (a) controls on the balance between aeolian and cryospheric processes in the modern depositional system, (b) the stratigraphic architecture of related sedimentary deposits, and (c) processes of sediment accumulation and preservation. Images from Context Camera (CTX; 6 m/pixel) are used to classify and map sedimentary environments, surfaces, and deposits on the reentrant floor, to refine the established geologic map of the reentrant, and to infer the stratigraphic record of the accumulation from Chasma Boreale's depositional system. A spectrum of sedimentary environments occurring between those dominated by aeolian and by cryospheric processes are identified. Through time, the boundaries of these sedimentary environments have shifted, resulting in complex lateral changes in the configuration of sedimentary environments on the reentrant's floor. Vertically, the stratigraphic record is characterized by the punctuation of sandy aeolian deposits by icy surfaces that indicate episodes of ice growth that preserve underlying deposits, resulting in accumulation. Stabilized icy surfaces occur at multiple vertical (temporal) scales and lateral extents, suggesting the influence of both regional climate change due to allogenic forcing, as well as autogenic dynamics within the transitional system. These observations demonstrate that the Chasma Boreale accumulation can be interpreted in an aeolian sequence stratigraphic framework. This work contributes the first detailed description of the processes forming polar aeolian sequences, with an emphasis on the competing and complementary dynamics between aeolian and cryospheric systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have