Abstract

A detailed experimental investigation was conducted into the interaction of a convected wake and a separation bubble on the rear suction surface of a highly loaded low-pressure (LP) turbine blade. Boundary layer measurements, made with 2D LDA, revealed a new transition mechanism resulting from this interaction. Prior to the arrival of the wake, the boundary layer profiles in the separation region are inflexional. The perturbation of the separated shear layer caused by the convecting wake causes an inviscid Kelvin-Helmholtz rollup of the shear layer. This results in the breakdown of the laminar shear layer and a rapid wake-induced transition in the separated shear layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call