Abstract

Using nanoindentation, we examine the fundamental nature of plasticity in a bulk amorphous metal. We find that the mechanics of plasticity depend strongly on the indentation loading rate, with low rates promoting discretization of plasticity into rapid bursts. For sufficiently slow indentations, we find that plastic deformation becomes completely discretized in a series of isolated yielding events. As the loading rate is increased, a transition from discrete to continuous yielding is observed. These results are fundamentally different from the classical expectations for metallic glasses, in which the transition from discrete to continuous yielding occurs upon a decrease in deformation rate. The present experimental results are analysed with reference to the theoretical ideal-plastic strain field beneath an indenter and rationalized on the basis of mechanistic models of glass plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.