Abstract

ABSTRACTThe teeth of two megatooth macro-predatory shark species (Carcharocles chubutensis and Carcharocles megalodon; Otodontidae, Chondrichthyes) occur within the Miocene Chesapeake Group of Maryland, U.S.A. Definitive separation between all the teeth of Carcharocles chubutensis and Carcharocles megalodon is impossible because a complex mosaic evolutionary continuum characterizes this transformation, particularly in the loss of lateral cusplets. The cuspleted and uncuspleted teeth of Carcharocles spp. are designated as chronomorphs because there is wide overlap between them both morphologically and chronologically. In the lower Miocene Beds (Shattuck Zones) 2–9 of the Calvert Formation (representing approximately 3.2 million years, 20.2–17 Ma, Burdigalian) both cuspleted and uncuspleted teeth are present, but cuspleted teeth predominate, constituting approximately 87% of the Carcharocles spp. teeth represented in our sample. However, in the middle Miocene Beds 10–16A of the Calvert Formation (representing approximately 2.4 million years, 16.4–14 Ma, Langhian), there is a steady increase in the proportion of uncuspleted Carcharocles teeth. In the upper Miocene Beds 21–24 of the St. Marys Formation (representing approximately 2.8 million years, 10.4–7.6 Ma, Tortonian), lateral cusplets are nearly absent in Carcharocles teeth from our study area, with only a single specimen bearing lateral cusplets. The dental transition between Carcharocles chubutensis and Carcharocles megalodon occurs within the Miocene Chesapeake Group. Although this study helps to elucidate the timing of lateral cusplet loss in Carcharocles locally, the rationale for this prolonged evolutionary transition remains unclear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call