Abstract

Plant growth and development require a continuous balance between cell division and differentiation. In root meristems, differentiated cells acquire specialized functions, losing their mitotic potential. Some plant cells, such as pericycle cells, have a remarkable plasticity to regenerate new organs. The molecular mechanisms underlying cell reprogramming are not completely known. In this work, a functional screening of transcription factors identified Arabidopsis OBP4 (OBF Binding Protein 4) as a novel regulator of root growth and cell elongation and differentiation. Overexpression of OBP4 regulates the levels of a large number of transcripts in roots, many involved in hormonal signaling and callus formation. OBP4 controls cell elongation and differentiation in root cells. OBP4 does not induce cell division in the root meristem, but promotes pericycle cell proliferation, forming callus-like structures at the root tip, as shown by the expression of stem cell markers. Callus formation is enhanced by ectopic expression of OBP4 in the wild-type or alf4-1, but is significantly reduced in roots that have lower levels of OBP4. Our data provide molecular insights into how differentiated root cells acquire the potential to generate callus, a pluripotent mass of cells that can regenerate fully functional plant organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.