Abstract
Looking at the artificial neural networks’ literature, most of the studies started with feedforward artificial neural networks and the training of many feedforward artificial neural networks models are performed with derivative-based algorithms such as levenberg–marquardt and back-propagation learning algorithms in the first studies. In recent years, although many new heuristic algorithms have been proposed for different aims these heuristic algorithms are also frequently used in the training process of many different artificial neural network models. Pi-sigma artificial neural networks have different importance than many artificial neural network models with its higher-order network structure and superior forecasting performance. In this study, the training of Pi-Sigma artificial neural networks is performed by differential evolution algorithm uses DE/rand/1 mutation strategy. The performance of the proposed method is evaluated by two data sets and seen that the proposed method has a very effective performance compared with many artificial neural network models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.