Abstract

A square-tiled surface (STS) is a branched cover of the standard square torus with branching over exactly one point. In this paper we consider a randomizing model for STSs and generalizations to branched covers of other simple translation surfaces which we call polygon-tiled surfaces. We obtain a local central limit theorem for the genus and subsequently obtain that the distribution of the genus is asymptotically normal. We also study holonomy vectors (Euclidean displacement vectors between cone points) on a random STS. We show that asymptotically almost surely the set of holonomy vectors of a random STS contains the set of primitive vectors of $${\mathbb {Z}}^2$$ and with probability approaching 1/e, these sets are equal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.